How exogenous nitric oxide regulates nitrogen assimilation in wheat seedlings under different nitrogen sources and levels

نویسندگان

  • Sadegh Balotf
  • Shahidul Islam
  • Gholamreza Kavoosi
  • Bahman Kholdebarin
  • Angela Juhasz
  • Wujun Ma
چکیده

Nitrogen (N) is one of the most important nutrients for plants and nitric oxide (NO) as a signaling plant growth regulator involved in nitrogen assimilation. Understanding the influence of exogenous NO on nitrogen metabolism at the gene expression and enzyme activity levels under different sources of nitrogen is vitally important for increasing nitrogen use efficiency (NUE). This study investigated the expression of key genes and enzymes in relation to nitrogen assimilation in two Australian wheat cultivars, a popular high NUE cv. Spitfire and a normal NUE cv. Westonia, under different combinations of nitrogen and sodium nitroprusside (SNP) as the NO donor. Application of NO increased the gene expressions and activities of nitrogen assimilation pathway enzymes in both cultivars at low levels of nitrogen. At high nitrogen supplies, the expressions and activities of N assimilation genes increased in response to exogenous NO only in cv. Spitfire but not in cv. Westonia. Exogenous NO caused an increase in leaf NO content at low N supplies in both cultivars, while under high nitrogen treatments, cv. Spitfire showed an increase under ammonium nitrate (NH4NO3) treatment but cv. Westonia was not affected. N assimilation gene expression and enzyme activity showed a clear relationship between exogenous NO, N concentration and N forms in primary plant nitrogen assimilation. Results reveal the possible role of NO and different nitrogen sources on nitrogen assimilation in Triticum aestivum plants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

S-nitrosothiols regulate nitric oxide production and storage in plants through the nitrogen assimilation pathway

Nitrogen assimilation plays a vital role in plant metabolism. Assimilation of nitrate, the primary source of nitrogen in soil, is linked to the generation of the redox signal nitric oxide (NO). An important mechanism by which NO regulates plant development and stress responses is through S-nitrosylation, that is, covalent attachment of NO to cysteine residues to form S-nitrosothiols (SNO). Desp...

متن کامل

Arabidopsis nitrate reductase activity is stimulated by the E3 SUMO ligase AtSIZ1

Small ubiquitin-related modifier (SUMO) is a small polypeptide that modulates protein activity and regulates hormone signalling, abiotic and biotic responses in plants. Here we show that AtSIZ regulates nitrogen assimilation in Arabidopsis through its E3 SUMO ligase function. Dwarf plants of siz1-2 flower early, show abnormal seed development and have high salicylic acid content and enhanced re...

متن کامل

Effect of exogenous application of ascorbic acid on physiological and biochemical characteristics of wheat under water stress

Wheat (Triticum aestivum L.) is widely cultivated in the Mediterranean zone where plantsgenerally suffer from water stress during heading and reproductive stages. This research wascarried out at the experimental farm of the faculty of agriculture, Kafrelsheikh University usingtwo water treatments (water stress and well-watered), four N levels (0, 80, 160 and 240 kg ha-1)and two ascorbic acid le...

متن کامل

Competition between Wild Mustard (Sinapis arvensis L.) and Wheat (Triticum aestivum L.) under Different rate of Nitrogen

To study the effects of applied nitrogen levels and wild mustard densities on the growth of wheat and wild mustard, a field experiment was conducted at Re-search and Experimental Field of Islamic Azad University of Ahvaz-Iran. The effects of three nitrogen levels namely 90, 150 and 210 kg.ha-1 and four wild mustard densities such as 0, 5, 10 and 15 plants.m-2 were evaluated in split plot arrang...

متن کامل

Enhanced nodulation and nitrogen fixation in the abscisic acid low-sensitive mutant enhanced nitrogen fixation1 of Lotus japonicus.

The phytohormone abscisic acid (ABA) is known to be a negative regulator of legume root nodule formation. By screening Lotus japonicus seedlings for survival on an agar medium containing 70 microM ABA, we obtained mutants that not only showed increased root nodule number but also enhanced nitrogen fixation. The mutant was designated enhanced nitrogen fixation1 (enf1) and was confirmed to be mon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2018